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LETTER TO THE EDITOR

Conductance of two-dimensional imperfect conductors:
does the elastic scattering preclude localization atT = 0?

Yu V Tarasov
Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine,
12 Proskura Street, Kharkov 310085, Ukraine

Received 3 August 1999

Abstract. Elastic electron–impurity scattering is proven analytically to prevent interferential
localization in two-dimensional wires with more than one conducting channel. An unconventional
diffusive regime is found in the length region where the electrons are usually considered as localized.
An ohmic, rather than exponential, dependence of theT = 0 conductance is predicted, with a
length-dependent diffusion coefficient.

Electronic and classical-wave transport in random systems of various dimensionalities has
been attracting great attention for scores of years. Numerous attempts in this field have
been concentrated around the problem of Anderson localization, whose various aspects have
built up to a great extent the understanding of metal–insulator transitions. The prospects for
research in this area are substantially determined by the claims of the one-parameter scaling
theory of localization [1]. Although universality of the one-parameter scaling has long been
challenged [2, 3], attempts were made (and still are made) to improve the scaling approach
in view of its relative convenience and simplicity [4, 5]. They were stimulated considerably
by experimental findings of unexpectedly anomalous transport in dilute two-dimensional (2D)
electron and hole systems [6]. Also, unconventional experimental results have stimulated
the development of different approaches to the problem of quantum transport in disordered
2D systems (see, e.g., the discussion in reference [7]); the most intriguing expectations are
associated with the Coulomb interaction of carriers [8,9]. Yet the transport theories with e–e
interaction still cannot claim to have general acceptance, because of the substantial controversy
as regards interpreting the role of the interaction within different domains of parameters
corresponding to diffusive [10] and localized [11,12] regimes.

In spite of an ample variety of theoretical approaches to the problem of localization, some
points in this field are still vague, and therefore attract intensive research. The important
obstacle is insufficient mathematical grounds for localization in 2D and 3D random systems,
contrary to the 1D case [13], where rigorous results have been obtained for arbitrary strength
of disorder. Meanwhile, it is instructive to point out that the elaboration of practical asymptotic
methods for calculating the disorder-averaged many-particle characteristics (conductivity,
density–density correlation, etc), leaving aside the detailed spectral analysis, was even more
important for the theory of 1D random systems than development of the mathematical
foundation [14–17]. Similar arguments in favour of localization, or against it, have not yet
been found for 2D and 3D systems, except as regards some aspects of the weak-localization
problem [18,19].
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The objective of this letter is to derive a quantum theory, i.e. based on waveguide ideology,
well adapted for the analysis of charge transfer in weakly disordered 2D conductors. This theory
can be constructed with the same rigour as that in references [14–17], due to the problem of
quantum transport in 2Dwaveguide systemsbeing reduced exactly to a set of purely one-
dimensional subsidiary problems. Although substantial complication of the potentials arises
as a requirement for such a reduction (the problems turn out to be non-Hermitian), the dynamic
properties of one-dimensional systems can now be subjected to canonical analysis beyond the
scaling hypothesis, RMT, etc.

We consider a two-dimensional rectangular sample of lengthL in thex-direction and width
D in they-direction, where non-interacting electrons subject to a static random potential are
confined between the hard-wall lateral boundariesy = ±D/2, while in the direction of the
current(x) we suppose the system open. The dimensionless conductanceg(L) (in units of
e2/πh̄) is computed from the linear response theory [20], whence at zero temperature the
formula follows:

g(L) = − 4

L2

∫ ∫
L

dx dx ′
∞∑

n,n′=1

∂Gnn′(x, x
′)

∂x

∂G∗nn′(x, x
′)

∂x ′
. (1)

HereGnn′(x, x
′) is the retarded one-electron Green function in the coordinate-mode rep-

resentation, i.e. Fourier transformed over the transverse coordinate. This function obeys the
equation[
∂2

∂x2
+ k2

n + i0− Vn(x)
]
Gnn′(x, x

′)−
∞∑
m=1
(m6=n)

Unm(x)Gmn′(x, x
′) = δnn′δ(x − x ′) (2)

wherek2
n = k2

F − (nπ/D)2 is the longitudinal mode energy,kF is the Fermi wavenumber, and
Unm(x) is the mode matrix element of the ‘bulk’ random potentialV (r) which is assumed to
have zero mean and the binary correlator〈

V (r)V (r′)
〉 = QW(r − r′) (3)

wherer = (x, y). The angular brackets in equation (3) stand for impurity averaging; the
functionW(r) is normalized to unity and has the correlation radiusrc.

From the technical point of view it is important that the diagonal matrix element
Vn(x) ≡ Unn(x) is initially separated in equation (2) from off-diagonal elements, so that
the matrix‖Unm‖ governs inter-mode transitions only. This enables us to strictly reduce the
problem of finding the entire set of functionsGnn′(x, x

′) to the solution of a subset of purely
one-dimensional closed equations for the diagonal mode functionsGnn(x, x

′). The exact
‘one-dimensionalization’ procedure is sketched out below.

First, we introduce the auxiliary (trial) Green functionG(V )
n (x, x ′) obeying the equation[

∂2

∂x2
+ k2

n + i0− Vn(x)
]
G(V )
n (x, x ′) = δ(x − x ′) (4)

and Sommerfeld’s radiative conditions [21] at the strip endsx = ±L/2, which seem natural
for an open system. Then, turning from equation (2) to the consequent integral equation

Gnn′(x, x
′) = G(V )

n (x, x ′)δnn′ +
∞∑
m=1

∫
L

dt Rnm(x, t)Gmn′(t, x
′) (5)

with the kernel

Rnm(x, t) = G(V )
n (x, t)Unm(t) (6)
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one can express all of the off-diagonal mode elementsGmn via the diagonal onesGnn by means
of the linear operator̂K:

Gmn(x, x
′) =

∫
L

dt Kmn(x, t)Gnn(t, x
′). (7)

The equation for the matrix elementsKmn(x, x ′) of K̂ results directly from equation (2):

Kmn(x, x
′) = Rmn(x, x

′) +
∞∑
k=1
(k 6=n)

∫
L

dt Rmk(x, t)Kkn(t, x
′). (8)

This equation belongs to a class of multi-channel Lippmann–Schwinger equations that are
known to be extremely singular in general, in contrast to their single-channel counterparts [22].
However, by choosing the trial Green functionG(V )

n as a zero approximation forGnn′ and
perturbing it by the inter-mode potentialsUnm(x) only, we manage to avoid the above-
mentioned singularity. Therefore the solution of equation (8) can be written in the form

K̂ = (I− R̂)−1R̂Pn (9)

whereR̂ is an operator acting in the mixed coordinate-mode space(x, n) and specified by the
matrix elements (6). It is important that the space indicated contains all of the waveguide
modes except thenth mode itself. The projection operatorPn makes the mode index of any
operator that stands next toPn (either on the left or on the right) equal ton.

From equations (2), (7), (9) we obtain the exact closed one-dimensional equation for each
diagonal functionGnn(x, x

′) separately:[
∂2

∂x2
+ κ2

n + i0− Vn(x)−1T̂n
]
Gnn(x, x

′) = δ(x − x ′) (10)

with κ2
n = k2

n−〈T̂n〉 and1T̂n = T̂n−〈T̂n〉. The operator1T̂n acts on the variablex only, since
from equation (9) it follows that the operatorT̂n is a two-dimensionalT -matrix [22] enveloped
by the projective operatorsPn:

T̂n = PnÛ(I− R̂)−1R̂Pn = PnÛ(I− R̂)−1Pn. (11)

Û is the inter-mode scattering operator in(x, n) space, specified by matrix elements

〈x, k|Û |x ′, m〉 = Ukm(x)δ(x − x ′).
Hereinafter, when analysing equation (10), we regard a set of the renormalized energiesκ2

n

(n = 1, 2, . . .) as representing the new ‘unperturbed spectrum’ of the system, instead of the
original spectrum{k2

n}. The perturbation theory will now be developed making use of the
appropriate zero-mean potentialsVn(x) and1T̂n.

To complete the one-dimensionalization we express the conductance (1) through the
diagonal Green functionsGnn and the trial functionsG(V )

n (both one-dimensional!) In this
letter we focus on the case ofweak electron–impurity scatteringspecified by the inequalities

k−1
F , rc � ` (12)

with ` = 2kF /Q denoting asemiclassicalmean free path evaluated for aδ-correlated 2D
random potential, i.e.W(r) = δ(r) in equation (3). The conditions (12) allow us to expand
the operator̂K, equation (9), to lowest order in the inter-mode operatorR̂, which in turn enables
us to replace the exact operatorT̂n from equation (11) by its approximate value:

T̂n ≈ PnÛĜ(V )ÛPn (13)

with the operatorĜ(V ) defined by the matrix elements

〈x, k|Ĝ(V )|x ′, m〉 = δkmG(V )
m (x, x ′).
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Applying now equations (7), (9), and (13) to equation (1), we arrive at the following expression
for the impurity-averaged conductance:

〈g(L)〉 = − 4

L2

∞∑
n=1

∫ ∫
L

dx dx ′
[〈
∂Gnn(x, x

′)
∂x

∂G∗nn(x, x
′)

∂x ′

〉
+
Q
D

∞∑
m=1
(m6=n)

∫
L

dy

〈
G(V )
m

∗
(x, y)

∂

∂x
G(V )
m (x, y)

〉

×
〈
Gnn(y, x

′)
∂

∂x ′
Gnn

∗(y, x ′)
〉]
. (14)

At this point it is useful to discuss the spectral properties of the quantum-mechanical
system governed by equation (10). First, the term〈T̂n〉 = 1k2

n − i/τ (ϕ)n which modifies the
initial spectrum{k2

n} can be readily calculated. In the limit (12), an explicit form of the function
W(r) is not so important, and we obtain from equation (13)

1k2
n =

Q
D

∞∑
m=1
(m6=n)

P
∫ ∞
−∞

dq

2π

W̃(q + kn)

k2
m − q2

(15a)

1

τ
(ϕ)
n

= Q
D

Nc∑
m=1
(m6=n)

1

4km

[
W̃ (kn − km) + W̃ (kn + km)

]
. (15b)

In equation (15a), the symbolP stands for principal value, and̃W(q) is the Fourier transform
of the correlation functionW(r− r′) overy, y ′, andx− x ′. The summation in equation (15b)
is restricted by the numberNc = [kFD/π ] of conducting channels(extended waveguide
modes), because only forn 6 Nc is the disorder-averaged diagonal-in-n Green matrix

〈
Ĝ(V )

〉
in equation (13) essentially complex. The purely real addendum (15a) to the original mode
energyk2

n is small under the conditions of equation (12), so it can be omitted. At the same
time, the ‘level broadening’ 1/τ (ϕ)n , which can be interpreted as the inverse phase-breaking
time for thenth-mode state, relates to the mean level spacing asNc/kF `, and thus cannot be
omitted in the framework of the weak-scattering approximation in general. Just the quantity
(15b) is of crucial importance for the further analysis.

We emphasize that the level broadening (15b) implies the presence of other extended modes
with m 6= n in the conductor. For extremely narrow strips withNc = 1, the imaginary term is
not present in the renormalized mode spectrum, as the sum (15b) contains no terms in this case.
Thus the system should exhibit true one-dimensional properties. Specifically, the electrons
can be transferred within two regimes only,ballistic and localized, and the conductance of
such a wire is decreasedexponentiallywith the lengthL exceeding thelocalization length
ξ1 = 4Lb ∼ `, the quadruple Born backscattering length [23].

On increasing the conductor width, as soon as the wire ceases to be single mode(Nc > 2),
the situation changes drastically. Thenth-mode spectrum is modified jointly by both the
potentialsVn(x) and1T̂n, and acquires the level broadening (15b). We thus come to the
necessity of analysing the condition of (one-dimensional!) localization inlossymedia, though
no inelastic scatteringwas initially involved in the problem. The appropriate comprehensive
theory is beyond the scope of a letter, and will be given in a more extensive publication [24].

Here we emphasize that in studying spectral properties of a system governed by
equation (10), one should clearly distinguish between thedirect intra-mode scattering due
to thelocal potentialVn(x) andindirect intra-mode scattering due to theoperatorpotentialT̂n.
The intra-mode potentialVn(x) gives rise to the coherent localization effect, just as in the case
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with Nc = 1; see reference [23]. This potential causes local (inx) elasticn→ n transitions,
so the effect is purely interferential. Meanwhile, from equations (11), (13) it follows that the
potentialT̂n can also be associated with then→ n scattering, but via all of the other modes,
i.e. excluding thenth mode. Pictorially, this can be thought of as diffusion in the mode space
with return to the initial mode.

It is justified thus to regard the operator potentialT̂n just as governing theinter-mode
scattering within the effectively ‘single-mode’ problem (10). This scattering can lead both to
the coherent localization (due to the potential1T̂n) and to the uncertainty of a mode state due to
the term i/τ (ϕ)n arising from the strong complexity of the trial functionsG(V )

m (x, x ′) atm 6 Nc.
This duality of the inter-mode scattering, especially the appearance of the ‘phase-breaking’
term i/τ (ϕ)n , in spite of the scattering due to the potentialT̂n being effectivelyintra-mode(i.e.,
at first sight elastic), has a clear physical explanation. It certainly results from theprobabilistic
nature of electron transitions through intermediate mode statesm 6= n (intrinsic to the potential
T̂n) with mode energiesdifferentfrom k2

n. Thishidden inelasticityis precisely the reason for
the strong complexification of the quasi-particle spectrum (15).

In the final stage we discuss the role of the inter-mode scattering over the whole range
of the conductor length by estimating the Born scattering rate 1/τ (T )n which determines the
fundamental frequency of the states presumably localized by the 1D random potential1T̂n.
Estimation of the operator norm||1T̂n||2 with the use of equation (13) yields

τ
(ϕ)
n

τ
(T )
n

∼ 1

cos2 ϑn
min

(
1,
L/D

kF `

)
(16)

whereϑn is a ‘sliding angle’ of the moden with respect to thex-axis, |sinϑn| = nπ/kFD.
The level broadening for annth mode exceeds the level spacing provided that the wire is not
extremely stretched along thex-axis, i.e. if the lengthL does not fall into the interval

L� DkF` ∼ Nc`. (17)

Yet even within this interval the level spacing 1/τ (T )n due to the potential1T̂n cannot exceed
the level broadening 1/τ (ϕ)n . Consequently it is useless to seek the traditional interferential
localization at any length of the multi-mode(Nc > 2) conductor.

To illustrate the above statement, we find the average conductance (14) for different lengths
in the relatively easy caseNc � 1. The exact mode functionGnn can be obtained from the
equation

Gnn(x, x
′) = G(0)

nn (x, x
′) +

(
Ĝ(0)
nn 1T̂n Ĝnn

)
(x, x ′) (18)

which stems directly from equation (10), where the ‘unperturbed’ functionG(0)
nn (x, x

′) obeys
equation (10) with1T̂n = 0. With the estimate (16) taken into account, one can solve
equation (18) perturbatively in1T̂n. In doing so, the addition to the conductance emerges;
this is similar to the second term〈g(2)(L)〉 on the r.h.s. of equation (14), but proportional to
a higher degree of the small interaction strengthQ. The potential1T̂n can thus be removed
from equation (10) and the inter-mode scattering taken into account through the dephasing rate
1/τ (ϕ)n and the term〈g(2)(L)〉. The potentialVn(x), though different from1T̂n in its physical
meaning, can also be removed from equation (10) because of the relative smallness of its norm,
〈‖V̂n‖2〉/〈‖1T̂n‖2〉 ∼ N−1

c . Then the Green functionGnn can be replaced in equation (14) by
its ‘unperturbed’ expression (the main approximation inN−1

c � 1)

G(0)
nn (x, x

′) = 1

2ikn
exp

{[
ikn − 1/(` cosϑn)

]|x − x ′|} (19)

which nonetheless includes most of the inter-mode scattering effects.
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As to the functionsG(V )
m (x, y) in equation (14), atL � Nc` we can put the potential

Vm(x) ≡ 0 since themth-mode localization length found from equation (4) with the use of the
method of reference [23] is

ξm = 16π

3
Nc` cos2 ϑm/W̃(2km) ∼ Nc`.

In this case the second term in equation (14) turns out to be−1/8 of the first one, i.e. not
parametrically small. Yet in the limit (17), all of the functionsG(V )

m (x, y) are localized, and
therefore the second term in equation (14) is negligibly small.

On the basis of the above arguments, we arrive at the following asymptotic expressions for
the conductance (14), disregarding weak-localization corrections governed by the intra-mode
potentialsVn(x):

(i) L < `: 〈g(L)〉 ≈ Nc
(ii ) `� L� Nc`: 〈g(L)〉 ≈ 7π

32
Nc`/L� 1

(iii ) Nc`� L: 〈g(L)〉 ≈ π

4
Nc`/L� 1.

(20)

The result given in equation (20) allows us to distinguish three regimes of charge transport
in multi-mode conductors, none of them localized in the anticipated sense. Regime (i) cor-
responds to entirely ballistic transport, both from the semiclassical and quantum standpoints.
In regimes (ii) and (iii) the semiclassical motion should be regarded as diffusive. The diff-
erence between them is that in regime (ii) all of the mode states could be considered extended
in the absence of the inter-mode scattering, whereas in regime (iii) they would all be localized
due to the potentialsVn(x). In both diffusive regimes (ii) and (iii), the conductance exhibits
purely ohmic (inversely proportional toL) behaviour, but with different (classical) diffusion
coefficients. Note that just in regime (iii), where all of thetrial stateswould be localized if
the inter-mode scattering was disregarded, the result given by the classical kinetic theory is
exactly reproduced. No exponential decay of the conductance appears at any length and width
of the system provided thatNc > 2.

To conclude, theT = 0 conductance of a 2D finite-size disordered metal strip was
calculated. The interferential localization was shown to manifest itself strongly only for
single-mode, i.e. purely 1D, conductors. In commonly examined square-shaped multi-mode
samples, the electron transport is diffusive as long asL� `, the semiclassical mean free path.
For any extended (propagating) mode in a multi-mode strip, all of the other extended modes
can be thought of as an effective phase-breaking reservoir destroying quantum interference
and hence the exponential localization.

The author is very grateful to N M Makarov for stimulating discussions and to A V Moroz for
help in the interpretation and presentation of the results.
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